Nonlinear Modelling and Support Vector Machines
نویسنده
چکیده
Neural networks such as multilayer perceptrons and radial basis function networks have been very successful in a wide range of problems. In this paper we give a short introduction to some new developments related to support vector machines (SVM), a new class of kernelbased techniques introduced within statistical learning theory and structural risk minimization. This new approach leads to solving convex optimization problems and also the model complexity follows from this solution. We especially focus on a least squares support vector machine formulation (LS-SVM) which enables to solve highly nonlinear and noisy black-box modelling problems, even in very high dimensional input spaces. While standard SVMs have been basically only applied to static problems like classification and function estimation, LS-SVM models have been extended to recurrent models and use in optimal control problems. Moreover, using weighted least squares and special pruning techniques, LS-SVMs can be employed for robust nonlinear estimation and sparse approximation. Applications of (LS)-SVMs to a large variety of artificial and real-life data sets indicate the huge potential of these methods.
منابع مشابه
STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کاملIdentification and Adaptive Position and Speed Control of Permanent Magnet DC Motor with Dead Zone Characteristics Based on Support Vector Machines
In this paper a new type of neural networks known as Least Squares Support Vector Machines which gained a huge fame during the recent years for identification of nonlinear systems has been used to identify DC motor with nonlinear dead zone characteristics. The identified system after linearization in each time span, in an online manner provide the model data for Model Predictive Controller of p...
متن کاملEvaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)
In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...
متن کاملNon-linear system modelling via online clustering and fuzzy support vector machines
Abstract: This paper describes a novel non-linear modelling approach by online clustering, fuzzy rules and support vector machine. Structure identification is realised by an online clustering method and fuzzy support vector machines, and the fuzzy rules are generated automatically. Time-varying learning rates are applied for updating the membership functions of the fuzzy rules. Finally, the upp...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملMining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کامل